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Theoretical and Practical
Considerations on the Problem of
Metal-Metal Interaction
by L. Magos* and M. Webb*

The interaction between two metals, which can be either synergistic or antagonistic, implies that the
behavior of one is changed by the presence of the other. Possible mechanisms of these interactions, whkh
include chemical association, competition for carriers, metabolic changes, induction of binding proteins,
membrane alterations are discussed.

The interactions between toxic compounds is a
loose term which implies that the behavior or effect
of one compound is changed by the administration
or presence of another. It does not imply that the
two compounds interact chemically, although
chemical reaction between them or their metabo-
lites is possible. Studies on the interaction between
metals are only in an early phase and do not permit
the development of generalizations or classifica-
tions.

Reaction between Two Metals
The simplest form of interaction between two

metals is a chemical reaction, either without or after
a chemical transformation, which can be a change in
the oxidation state of the metal or, in the case of
organometallic compounds, a change in, or cleav-
age of, the organic radical. If the in vitro conditions
do not favor the formation of an insoluble complex
between a cationic and anionic species of two met-
als, such complexes may be formed in vitro due to
change in pH or the oxidation state of at least one of
the metals. The indication of such a reaction is their
increased retention at the injection site when they
are administered simultaneously. It is essential,
however, that the dose should be low enough to
minimize the danger of local tissue damage, as in-
jury can affect absorption (I) without there being
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any interaction. Thus local tissue injury certainly
contributed to the increased retention of selenium at
the subcutaneous injection site caused by 28.5-228
,umole/kg Cd2+ (2). When 8.0,umole/kg Cd2+ is in-
jected with an equimolar dose of selenite, however,
the retention of selenium is increased only slightly
and the retention of Cd2+ not at all (3), thus refuting
the theory of complex formation. When, however,
2.5 ,umole/kg Hg2+ is administered with an equimo-
lar dose of selenite, the retention of both ions is
increased (3). Thus selenite may react with Hg2+ but
not with Cd2+ at the injection site. As mercury sele-
nite precipitates at a lower pH than cadmium sele-
nite (4), the probability of the formation in vivo of
the former may be higher than of the latter.
Change in the oxidation state of one metal may

favor reaction with another metal, outside the in-
jection site. The conversion of hexavalent
selenium to bivalent selenium allows the formation
of-insoluble metal selenides and, in rats given Hg2+
and selenate, black particles that contain mercury
and selenium in a 1:1 ratio occur in macrophages
and intranuclearly in the renal paroximal tubular
cells (5). The formation of mercury selenide sup-
poses not only the reduction of selenate or selenite,
but also the concurrent presence of Hg2+ to react
with selenide. Similar particles have not been found
in rats given selenate with Cd2+ or tellurate and Hg2+
(5), and thus under these circumstances, the heavy
metal may not be available when and where selenide
is formed.

Selenium and tellurium differently affect the dis-
tribution of Hg2+. Thus uptake of Hg2+ by the liver
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is increased by selenium and in the first 24 hr is
unaffected by tellurium, whereas uptake by the kid-
ney is decreased by selenium and increased by tel-
lurium (6). The difference in these effects might be
explained by the higher reduction potential of
SeO32 compared with that of TeO32. If the forma-
tion of selenide is faster than the formation of tel-
luride and the presence of Hg2+ is not a limiting
factor, the formation of colloidal particles, which
favors deposition in the reticuloendothelial system,
must be faster for HgSe than for HgTe.

Competition for Carriers
Although cations, such as Cd2+, Hg2+, and Zn2+,

cannot form complexes with one another, the re-
tention of any of them is increased by the presence
of one of the other two (7). A likely explanation for
this type of interaction is the depletion of carriers.
This would explain why the retention of Hg2+ is
increased in the absence of any other metal when
the dose is increased from 2.5 to 5.0 ,umole/kg Hg2+
(7).
Many of the metals with known interactions, e.g.,

Cd2+, Hg2+, Pb2+, Zn2+, and selenium, can react
with thiol groups. If diffusible thiol compounds
contribute to their transport, interaction can be
mediated through competition for the same carrier.
Thus the retention of Cd2+ at the injection site is
increased by Hg2+ more than the retention of Hg2+
by Cd2+, and the retention of Zn2+ by Hg2+ in-
creased more than by Cd2+ (7).
Change in the absorption can affect organ dis-

tribution. Thus Hg2+ decreases the liver content of
cadmium by 24% 48 hr after their simultaneous ad-
ministration, but the difference becomes non-
significant when expressed in per cent of the ab-
sorbed Cd2+ instead of in per cent of the dose (7).
Moreover, if the metals are injected intraperitone-
ally and the Hg2+ to Cd2+ ratio is increased from 1:1
to 10:1 or more, the liver uptake of Cd2+ increases
(8).

Zinc and copper which, given in 100-400 times
molar excess to Cd2+, increase the liver uptake of
cadmium at 24 hr. Although at this time Cu2+ and
Zn2+ would have increased the thionein concentra-
tion in liver, the possibility cannot be dismissed that
the transport of Cd to the liver cells was also influ-
enced. For example, it has been known that the
liver uptake of bilirubin or bromsulfophthahalein is
fcilitated by their binding to albumin in the plasma
(9).
Competition for extracellular carrier proteins can

contribute to the interactions involving transport
and this will depend upon dose and the route of
administration. Selenium, which increases the

binding affinities of serum proteins for Hg2+ (10)
also increases the blood concentration and liver
uptake of Hg2+ (3). However, increase in the blood
concentration by selenium is mainly due to its in-
crease in the packed cells (11). The binding of
methylmercury to serum proteins is not affected by
selenium (10) and selenium decreases the blood
concentration of methylmercury with a slight de-
crease in liver uptake (12).

Interaction may occur on the albumin molecule
by competition between Cu2+ and Zn2+ for common
binding sites (13). As, at physiological concentra-
tions and pH, preferential binding of cations to
proteins is favored by cooperation between several
amino acid residues, interactions may occur not
only by competition for the same site, but also by a
change in the affinity of one site for a given cation in
consequence of the binding of another at a different
site.
The mechanism whereby selenium affects the

binding of mercury or cadmium is at present not
fully understood but, as a first step, selenite must be
metabolized in the red blood cells, after which
selenium and Hg2+ (14), or selenium and Cd2+ (15),
are bound in a 1:1 ratio to some plasma proteins.

In the intestine, proteins seem to regulate the ab-
sorption of some metallic cations. Antagonism by
cadmium and zinc of the absorption of copper has
been attributed to competition for thionein in the
intestinal mucosa (13). It seems now, however, that
intestinal Zn2+ and Cu2+ binding proteins are not
identical; while the Zn2+ binding protein may be
thionein (16), the Cu2+ binding protein differs in its
amino acid composition from both thionein and
chelatin (17). Furthermore, there seems to be an
inverse relationship between the synthesis of these
binding proteins and cation transfer through the in-
testine (16, 17). That interaction between metals at
the level of intestinal absorption is more complex
than competition for a simple carrier is shown by
the diversity of conditions which influence the ab-
sorption of lead (18, 19).

Metabolic Interference
Cadmium and Hg2+ are able to decrease the for-

mation of dimethyl selenide from selenite (20, 21)
because dimethyl selenide formation has an abso-
lute requirement for GSH (22). The reaction of sele-
nite with GSH leads to the formation of seleno-
trisulfide (23). Either this compound, or another
metabolite of selenite, becomes bound to plasma
proteins, mainly ,8-lipoprotein and globulins (24)
and, by an unknown mechanism, promotes the
binding of Hg2+ and Cd2+ to plasma proteins (14,
15). It is not known how the metabolism of selenite,
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apart from dimethyl selenide formation, is influ-
enced by Hg2+ or Cd2+ and what is the essential step
in the protective effects between selenium and the
two heavy metals, but selenium increases the cleav-
age of C-Hg bond of phenylmercury (25). Observa-
tions that (a) the toxicity of dimethylselenide is in-
creased by Hg2+ (20), (b) selenium affects the blood
concentration and distribution of methylmercury
differently from inorganic mercury (3, 12), (c) in
tissue cultures MeHg+, on a molar basis is fifty
times more efficient against the toxicity of selenite
than Hg2+ (26); and (d) lead and selenium have a
mutual detoxifying effect (27), underline the diffi-
culty in the interpretation of the available biochemi-
cal data in relation to the pathological process.

Induction of Protein Binding Sites
Thionein is a low molecular weight protein (MW

< 10,000) which is able to incorporate or bind a
wide variety of metals: Cd2+, Cu2+, Zn2+, Hg2+,
Ag2+, Sn2+ (28), Co2+, and Bi3+ (29). The most po-
tent inducers of thionein synthesis are Zn2+, Cd2 ,
and Hg2+ (30-32). Cadmium will replace Zn2+, and
Hg2+ will replace Cd2+ in the corresponding metal-
lothionein of the liver (30) and kidneys in vivo (32,
33). Hence interactions between metals that involve
thionein can operate through the induction of the
protein and through competition for binding on an
induced metallothionein. Continuous Cd2+ ingestion
for example, leads to a considerable increase in the
hepatic content of Zn2+ and in the renal content of
copper bound to thionein (34), while copper and
zinc thionein can be isolated from the livers of Cu2+
injected rats (35). If uptake by an organ is increased
less than the increase in the thionein bound fraction
of the metal, toxicity could be decreased. Pretreat-
ment of female rats with low doses of Cd2+, how-
ever gives a maximum protection against lethal
doses of Cd2+ 1 and 3 days after pretreatment,
though increased thionein content and the capacity
to synthesize thionein are maintained for a much
longer time (36). Protection given by Cd2+ against a
renotoxic dose of Hg2+ increases the thionein bound
Hg2+ in the kidneys, but the increase in the total
uptake is higher, partly because large molecular
proteins bind more Hg2+ (33). Thus induction of
thionein and the role of thionein in metal induced
protection must be carefully analyzed in every in-
stance.

Interaction can produce protection even though
the thionein bound fraction of heavy metals is de-
creased. In the liver, kidneys, and testis, selenium
diverts nearly all Hg2+ or Cd2+ in the soluble frac-
tions from small molecular weight proteins, proba-
bly thionein, to larger ones (37, 38).

Morphological Factors
Pretreatment with a small but tubulotoxic dose of

UO22+ is able to protect against a subsequent toxic
dose. One of the factors in this protection is that the
regenerated brush border is more even compared
with the normal brush border (39). The brush border
is replaced by a smooth membrane after the admin-
istration of tubulotoxic doses of HgCl2 (40), and it is
known that in this condition animals can tolerate
higher doses of HgCl2 than otherwise (41). As those
metals which are able to initiate a tolerance are also
able to develop cross tolerance (41), morphological
factors, for example decreased surface area at the
part of the tubular cells, where metals are usually
taken up, might influence the tubular reabsorption
and contribute to their interaction.

Interaction and Synergistic or
Antagonistic Effects

Interaction between two metals usually results in
a decrease in toxicity. If this effect is associated
with a shorter half time or lower concentration in
the target organ, at least the last link between pro-
tection and interaction is established, even though
the mechanism of decrease in half time or organ
uptake may be unknown. However, the situation
usually is more complex; there is a mutual interac-
tion between metals which depend on a chain of
reactions; half time and uptake in the target organ
are increased, etc.
The purpose of research in this labyrinth is to

establish whether the connection between two ef-
fects like chemical interaction and protection is
coincidental or casual, and to establish the correct
sequence of events leading to antagonistic or syner-
gistic effects.
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